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41 bis Avenue de l’Observatoire, BP 1615, 25010 Besançon Cedex, France
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Abstract
A previously reported simple method for calculating complex matrix
eigenvalues is modified to incorporate the traditional HEG approach for the
case of even parity potentials. Two examples of resonance calculations are
given. Our matrix and perturbation results agree with each other, but are not
in full accord with previously published results for one of the test potentials.
New results are given for the resonances of the inverted Gaussian potential.

PACS numbers: 03.65.Nk, 02.30.Fn, 02.30.Tb, 02.60.−x, 03.65.−w,
31.15.−p

Two recent works [1, 2] have explained the ‘naive’ complex variable form of two traditional
computational methods (hypervirial perturbation theory and matrix diagonalization) for the
calculation of the resonances of perturbed oscillator systems. In the ‘naive’ approach, the usual
perturbation or matrix method is applied within a basis of harmonic oscillator states referring
to an oscillator with the potential term Wx2. In every formula in which the parameter W

appears, a complex W value WR + iWI is used and all other quantities appearing in the
calculation are allowed to take complex values. That this simple approach in the matrix case
could be as effective in calculating resonances as the more common full complex rotation
approach was suggested long ago [3]; the calculations of resonances in [1, 2] illustrated this
for several problems which had previously been treated using more complicated techniques.
The problems treated in [1, 2] involved perturbed oscillators with single-term x3 and x4

perturbations. This letter treats two smooth perturbations which are represented by infinite
series. We combine a complex variable approach with an early forerunner of discrete variable
methods, the method of Harris, Engerholm and Gwinn [4]. The complex variable form of the
HEG approach is easily obtained by applying the complex matrix technique described in [2],
together with a slight modification which is described below.

The original HEG approach [4] used a matrix transformation to diagonalize the matrix
of the coordinate x and then back-transformed the resulting diagonal matrix of the potential
V (x). Our procedure is slightly different, partly because of the even parity of the Hamiltonians
which we are considering. First, we take as a complex basis set the even or odd eigenfunctions
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of the Hamiltonian T + (WR + iWI)x2 and set up the matrices of x2 and T = −D2. Then
we apply the complex similarity transformation method of [2] to diagonalize the x2 matrix,
while at the same time subjecting the T matrix to the same transformation. The diagonal
matrix of the potential V (x2) is then produced by appropriate substitution along the diagonal
of the x2 matrix. The resulting V (x2) matrix is then added to the transformed T matrix to give
the Hamiltonian matrix (with no back-transformation). The resulting matrix is diagonalized
to produce the final set of complex energies. Experience with the numerical calculations
revealed the value of two modifications of the simple method reported in [2]. Since the HEG
approach requires the x2 matrix to be totally diagonal, it is important to ensure that the sum
of the off-diagonal elements in every column is reduced to a very small value. Experience
shows that sometimes one or two ‘stubborn’ columns freeze their sum at a non-zero value and
so prevent full convergence. In all cases encountered, this problem was resolved by adding
two or three cycles of transformation with the parameter SF defined in [2] being set at zero.
If in the final diagonalization only the lowest few complex eigenvalues are required then at
the second stage it is not obligatory to use the matrix transformation technique. For example,
a complex variable form of the Gauss–Seidel iterative approach suffices to extract a few of
the low resonances from the final complex T + V matrix, particularly when the sequence of
iterates is treated by using the complex variable form of the Wynn algorithm which was found
to be effective in the perturbation approach [1].

The first problem treated to test the ‘naive’ complex HEG method was one which has
been extensively treated from the point of view of complex resonance energies [5–7] and also
via a real variable approach using the concept of spectral concentration [8]. In [5–7], a method
was proposed for the accurate calculation of the resonances associated with the Hamiltonian

H = −D2 + x2 exp(−ν2x2) (1)

and a study of the condition numbers of the resonance energies led to the conjecture that for
the higher resonances the method of complex rotation might give unreliable results. For the
small values of ν2 (0.01 and 0.001) which are used in several of the tables presented in [5], it
is possible to apply both the matrix method of [2] and the hypervirial perturbation approach
of [1]. It was found that the two methods were in agreement and that they gave results which
differed from some of those of [5], even for low-lying resonances (where the criticisms about
the limitations of a complex oscillator basis are presumably not applicable). In applying the
complex HEG approach, it is, of course, necessary to remember that a diagonal element of the
transformed x2 matrix must be treated as a complex number of the form X + iY . Replacing
this diagonal element to produce the potential matrix for the (real) potential in equation (1)
thus requires replacing X + iY by

(X + iY ) exp(−ν2(X + iY )) = exp(−ν2X)((XC + YS) + i(YC − XS)), (2)

where C = cos(ν2Y ) and S = sin(ν2Y ).
In the hypervirial renormalized perturbation theory approach, the complex HVPT method

of [1] is applied to the partitioned Hamiltonian

H = −D2 + x2 exp(−ν2x2) = −D2 + x2 + V2x
4 + V3x

6 + · · ·
= −D2 + Wx2 + λ(1 − W)x2 + λV2x

4 + λ2V3x
6 + · · · , (3)

where λ is set equal to 1 in the numerical calculation, as explained in [9].
Tables 1 and 2 show some results for the ν2 values 0.0001 and 0.01, with results from

[5] shown for comparison. In both the perturbation and the matrix calculations, the complex
parameter W = WR + iWI was chosen to make WR equal to the ‘unperturbed’ value WR = 1,
while WI was varied over a wide range, both to search for a region of optimum convergence



Letter to the Editor L697

Table 1. Resonances of even parity for ν2 = 0.01: (A) present calculation; (B) results of [5].

A B

n ER EI ER EI

0 0.992 46 0.0 0.9925 0.0
2 4.900 93 0.0 4.9009 0.0
4 8.683 58 0.0 8.6836 0.0
6 12.335 02 0.0 12.3350 0.0
8 15.848 84 0.0 15.8488 0.0

10 19.217 38 0.0 19.2174 0.0
12 22.431 17 0.0 22.4312 0.0
14 25.478 16 0.0 25.4782 0.0
16 28.342 24 0.0 28.3422 0.0
18 31.000 37 0.0 31.0004 0.0
20 33.415 52 6.50 (−7) 33.7512 3.0 (−4)
22 35.509 82 1.355 (−3) 35.5098 1.4 (−3)
24 37.069 32 1.5925 (−1) 37.0693 1.593 (−1)
26 38.375 47 9.346 (−1) 38.7468 1.0004
28 39.789 02 2.033 94 39.8045 2.0367
30 41.234 29 3.319 38 41.2601 3.2488
32 42.687 86 4.757 40 42.6021 4.7565
34 44.138 30 6.328 03 44.1410 6.3314
36 45.578 74 8.017 88 45.6102 8.020 30
38 47.004 58 9.817 26 47.0034 9.8515

and to confirm that a reasonable number of digits are the same over a wide range of WI values.
The results quoted are thus very conservative ‘most pessimistic’ values. This approach was
considered to be necessary to ensure that the differences between our results and those of
[5] are genuine and not an artefact due to a special choice of the complex parameters in our
calculations. As an individual example of a result not given in the tables, we may quote
our result for the n = 1 resonance at ν2 = 0.04. We calculate this to have a real part of
2.843 057 25, after truncating our result; [5] gives the result 2.824 312. In general, our results
vary smoothly with ν2 and with the state number n, while the ‘anomalous’ results of [5] seem
to represent deviations from a smooth behaviour. Where the imaginary part of the energy is
given as zero, this indicates that it is typically less than 10−12 and so is not stable as WI is
varied.

The second problem which we studied was that of the resonances of the inverted Gaussian
potential subjected to a power law perturbation:

H = −D2 − 10 exp(−0.1x2) − λx4. (4)

Here again, the potential is suitable for treatment by both the perturbation method of [1]
and the HEG approach using the matrix eigenvalue method of [2]. The two techniques gave
the same results and a selection of the resonance energies is shown in table 3. Several checking
calculations were also carried out for the case of a harmonic oscillator perturbed by the term
−λx4; in all cases the complex HEG method reported here gave results which agreed to very
high precision with those given for this problem in the tables of [1, 2]. In their treatment of
spectral concentration, Brown and Eastham [8] commented that for a given ν2 value in the
potential of equation (1), there are only a finite number of points of spectral condensation in
the spectrum of the odd parity states of the Hamiltonian. They noted that the presence of
these points is related to the values of the complex resonance energies ER + iEI found in [5].
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Table 2. Resonances of selected states for ν2 = 0.0001: (A) present calculation; (B) results of [5].

n A B

0 0.999 9250 0.999 925
1 2.999 6250 2.999 677
2 4.999 0248 4.999 025
3 6.998 1246 6.998 125
4 8.996 9242 8.996 924
5 10.995 4235 10.995 877
6 12.993 6226 12.993 623
7 14.991 5213 14.991 344
8 16.989 1196 16.989 119
9 18.986 4174 18.986 242

10 20.983 4148 20.983 418
12 24.976 5078 24.976 502
14 28.968 3982 28.968 399
16 32.959 0855 32.959 086
18 36.948 5693 36.948 571
20 40.936 8493 40.936 844
22 44.923 9248 44.923 925
24 48.909 7957 48.909 797
26 52.894 4613 52.894 462
28 56.877 9213 56.877 922
30 60.860 1753 60.860 175
40 80.753 3396 80.753 321
50 100.616 2884 100.616 298
60 120.448 9676 120.449 097
70 140.251 3227 140.237 430
80 160.002 3299 160.000 434
90 179.764 8408 179.874 965

100 199.475 8931 199.664 121

Table 3. Some resonances for the perturbed inverted Gaussian potential of equation (4) (WR = 1.0;
WI = 1.0).

n = 0 n = 1

λ ER EI ER EI

0.0 −9.037 639 8798 0.0 −7.191 689 3344 0.0
0.01 −9.046 965 7444 2.206 822 (−7) −7.246 633 8687 6.769 099 (−5)
0.02 −9.056 982 9644 2.574 034 (−5) −7.312 539 7507 3.420 164 (−3)
0.03 −9.067 950 2211 2.699 506 (−4) −7.388 431 6838 2.027 596 (−2)
0.04 −9.079 987 3698 1.158 950 (−3) −7.463 883 1819 5.474 928 (−2)
0.05 −9.092 923 8655 3.155 366 (−3) −7.531 286 0559 1.022 625 (−1)
0.06 −9.106 375 5455 6.556 980 (−3) −7.588 602 2560 1.570 888 (−1)
0.07 −9.119 903 7580 1.143 983 (−2) −7.636 454 8008 2.152 353 (−1)
0.08 −9.133 131 0187 1.770 689 (−2) −7.676 207 0180 2.743 216 (−1)

Beyond a certain threshold ER value, the EI values increase rapidly. This rapid departure of
the resonance energies from the real axis prevents the appearance of a spectral concentration
on the real axis. Table 4 shows for ν2 = 0.02 how the complex resonances found by our
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Table 4. Complex resonances (B) and spectral concentration points (A) (from [8]) for the potential
of equation (1) at ν2 = 0.02 (WR = 1; WI = 1).

A B

n E ER EI

1 2.92 2.923 39 0.0
3 6.61 6.606 93 0.0
5 10.01 10.010 69 0.0
7 13.10 13.097 40 3.0 (−9)
9 15.80 15.801 97 1.20 (−5)

11 – 17.947 23 2.50 (−2)
13 – 19.378 12 5.95 (−1)

calculations (both perturbation and matrix) compare with the spectral concentration points
found in [8]. The phenomenon described in [8] is clearly visible.

The specimen results given in this letter show that the complex matrix method of [2] can be
effectively combined with the HEG approach to deal with the resonances arising from smooth
perturbations of the harmonic oscillator. It should be noted that the numerical results given in
the tables have been presented in a compact manner, for ease of display and comparison. Most
of the results are severe truncations of results which were calculable to several more decimal
digits by the techniques set out in this letter.
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