A complex variable form of the HEG technique

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 38 L695
(http://iopscience.iop.org/0305-4470/38/42/L05)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.94
The article was downloaded on 03/06/2010 at 04:00

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A complex variable form of the HEG technique

John P Killingbeck ${ }^{1}$, Alain Grosjean ${ }^{2}$ and Georges Jolicard ${ }^{2}$
${ }^{1}$ Mathematics Department, University of Hull, Hull HU6 7RX, UK
${ }^{2}$ Laboratoire d'Astrophysique de l'Observatoire de Besançon (CNRS, UMR 6091),
41 bis Avenue de l'Observatoire, BP 1615, 25010 Besançon Cedex, France

Received 14 July 2005, in final form 13 September 2005
Published 5 October 2005
Online at stacks.iop.org/JPhysA/38/L695

Abstract

A previously reported simple method for calculating complex matrix eigenvalues is modified to incorporate the traditional HEG approach for the case of even parity potentials. Two examples of resonance calculations are given. Our matrix and perturbation results agree with each other, but are not in full accord with previously published results for one of the test potentials. New results are given for the resonances of the inverted Gaussian potential.

PACS numbers: $\quad 03.65 . \mathrm{Nk}, 02.30 . \mathrm{Fn}, 02.30 . \mathrm{Tb}, 02.60 .-\mathrm{x}, 03.65 .-\mathrm{w}$, 31.15.-p

Two recent works [1, 2] have explained the 'naive' complex variable form of two traditional computational methods (hypervirial perturbation theory and matrix diagonalization) for the calculation of the resonances of perturbed oscillator systems. In the 'naive' approach, the usual perturbation or matrix method is applied within a basis of harmonic oscillator states referring to an oscillator with the potential term $W x^{2}$. In every formula in which the parameter W appears, a complex W value $\mathrm{WR}+\mathrm{iWI}$ is used and all other quantities appearing in the calculation are allowed to take complex values. That this simple approach in the matrix case could be as effective in calculating resonances as the more common full complex rotation approach was suggested long ago [3]; the calculations of resonances in [1, 2] illustrated this for several problems which had previously been treated using more complicated techniques. The problems treated in [1,2] involved perturbed oscillators with single-term x^{3} and x^{4} perturbations. This letter treats two smooth perturbations which are represented by infinite series. We combine a complex variable approach with an early forerunner of discrete variable methods, the method of Harris, Engerholm and Gwinn [4]. The complex variable form of the HEG approach is easily obtained by applying the complex matrix technique described in [2], together with a slight modification which is described below.

The original HEG approach [4] used a matrix transformation to diagonalize the matrix of the coordinate x and then back-transformed the resulting diagonal matrix of the potential $V(x)$. Our procedure is slightly different, partly because of the even parity of the Hamiltonians which we are considering. First, we take as a complex basis set the even or odd eigenfunctions
of the Hamiltonian $T+(\mathrm{WR}+\mathrm{iWI}) x^{2}$ and set up the matrices of x^{2} and $T=-D^{2}$. Then we apply the complex similarity transformation method of [2] to diagonalize the x^{2} matrix, while at the same time subjecting the T matrix to the same transformation. The diagonal matrix of the potential $V\left(x^{2}\right)$ is then produced by appropriate substitution along the diagonal of the x^{2} matrix. The resulting $V\left(x^{2}\right)$ matrix is then added to the transformed T matrix to give the Hamiltonian matrix (with no back-transformation). The resulting matrix is diagonalized to produce the final set of complex energies. Experience with the numerical calculations revealed the value of two modifications of the simple method reported in [2]. Since the HEG approach requires the x^{2} matrix to be totally diagonal, it is important to ensure that the sum of the off-diagonal elements in every column is reduced to a very small value. Experience shows that sometimes one or two 'stubborn' columns freeze their sum at a non-zero value and so prevent full convergence. In all cases encountered, this problem was resolved by adding two or three cycles of transformation with the parameter SF defined in [2] being set at zero. If in the final diagonalization only the lowest few complex eigenvalues are required then at the second stage it is not obligatory to use the matrix transformation technique. For example, a complex variable form of the Gauss-Seidel iterative approach suffices to extract a few of the low resonances from the final complex $T+V$ matrix, particularly when the sequence of iterates is treated by using the complex variable form of the Wynn algorithm which was found to be effective in the perturbation approach [1].

The first problem treated to test the 'naive' complex HEG method was one which has been extensively treated from the point of view of complex resonance energies [5-7] and also via a real variable approach using the concept of spectral concentration [8]. In [5-7], a method was proposed for the accurate calculation of the resonances associated with the Hamiltonian

$$
\begin{equation*}
H=-D^{2}+x^{2} \exp \left(-v^{2} x^{2}\right) \tag{1}
\end{equation*}
$$

and a study of the condition numbers of the resonance energies led to the conjecture that for the higher resonances the method of complex rotation might give unreliable results. For the small values of v^{2} (0.01 and 0.001) which are used in several of the tables presented in [5], it is possible to apply both the matrix method of [2] and the hypervirial perturbation approach of [1]. It was found that the two methods were in agreement and that they gave results which differed from some of those of [5], even for low-lying resonances (where the criticisms about the limitations of a complex oscillator basis are presumably not applicable). In applying the complex HEG approach, it is, of course, necessary to remember that a diagonal element of the transformed x^{2} matrix must be treated as a complex number of the form $X+\mathrm{i} Y$. Replacing this diagonal element to produce the potential matrix for the (real) potential in equation (1) thus requires replacing $X+\mathrm{i} Y$ by

$$
\begin{equation*}
(X+\mathrm{i} Y) \exp \left(-v^{2}(X+\mathrm{i} Y)\right)=\exp \left(-v^{2} X\right)((X C+Y S)+\mathrm{i}(Y C-X S)) \tag{2}
\end{equation*}
$$

where $C=\cos \left(v^{2} Y\right)$ and $S=\sin \left(v^{2} Y\right)$.
In the hypervirial renormalized perturbation theory approach, the complex HVPT method of [1] is applied to the partitioned Hamiltonian

$$
\begin{align*}
H & =-D^{2}+x^{2} \exp \left(-v^{2} x^{2}\right)=-D^{2}+x^{2}+V_{2} x^{4}+V_{3} x^{6}+\cdots \\
& =-D^{2}+W x^{2}+\lambda(1-W) x^{2}+\lambda V_{2} x^{4}+\lambda^{2} V_{3} x^{6}+\cdots, \tag{3}
\end{align*}
$$

where λ is set equal to 1 in the numerical calculation, as explained in [9].
Tables 1 and 2 show some results for the v^{2} values 0.0001 and 0.01 , with results from [5] shown for comparison. In both the perturbation and the matrix calculations, the complex parameter $W=\mathrm{WR}+\mathrm{iWI}$ was chosen to make WR equal to the 'unperturbed' value $\mathrm{WR}=1$, while WI was varied over a wide range, both to search for a region of optimum convergence

Table 1. Resonances of even parity for $v^{2}=0.01$: (A) present calculation; (B) results of [5].

	A			B			
n		ER	EI		ER		EI
0	0.99246	0.0		0.9925	0.0		
2	4.90093	0.0		4.9009	0.0		
4	8.68358	0.0		8.6836	0.0		
6	12.33502	0.0		12.3350	0.0		
8	15.848	0.0	0.0		15.8488		
10	19.21738	0.0		19.2174	0.0		
12	22.43117	0.0		22.4312	0.0		
14	25.47816	0.0		25.4782	0.0		
16	28.34224	0.0		28.3422	0.0		
18	31.00037	0.0		31.0004	0.0		
20	33.41552	$6.50(-7)$		33.7512	$3.0(-4)$		
22	35.50982	$1.355(-3)$		35.5098	$1.4(-3)$		
24	37.06932	$1.5925(-1)$		37.0693	$1.593(-1)$		
26	38.37547	$9.346(-1)$		38.7468	1.0004		
28	39.78902	2.03394		39.8045	2.0367		
30	41.23429	3.31938		41.2601	3.2488		
32	42.68786	4.75740		42.6021	4.7565		
34	44.13830	6.32803		44.1410	6.3314		
36	45.57874	8.01788		45.6102	8.02030		
38	47.00458	9.81726		47.0034	9.8515		

and to confirm that a reasonable number of digits are the same over a wide range of WI values. The results quoted are thus very conservative 'most pessimistic' values. This approach was considered to be necessary to ensure that the differences between our results and those of [5] are genuine and not an artefact due to a special choice of the complex parameters in our calculations. As an individual example of a result not given in the tables, we may quote our result for the $n=1$ resonance at $v^{2}=0.04$. We calculate this to have a real part of 2.84305725 , after truncating our result; [5] gives the result 2.824312 . In general, our results vary smoothly with ν^{2} and with the state number n, while the 'anomalous' results of [5] seem to represent deviations from a smooth behaviour. Where the imaginary part of the energy is given as zero, this indicates that it is typically less than 10^{-12} and so is not stable as WI is varied.

The second problem which we studied was that of the resonances of the inverted Gaussian potential subjected to a power law perturbation:

$$
\begin{equation*}
H=-D^{2}-10 \exp \left(-0.1 x^{2}\right)-\lambda x^{4} . \tag{4}
\end{equation*}
$$

Here again, the potential is suitable for treatment by both the perturbation method of [1] and the HEG approach using the matrix eigenvalue method of [2]. The two techniques gave the same results and a selection of the resonance energies is shown in table 3. Several checking calculations were also carried out for the case of a harmonic oscillator perturbed by the term $-\lambda x^{4}$; in all cases the complex HEG method reported here gave results which agreed to very high precision with those given for this problem in the tables of [1, 2]. In their treatment of spectral concentration, Brown and Eastham [8] commented that for a given v^{2} value in the potential of equation (1), there are only a finite number of points of spectral condensation in the spectrum of the odd parity states of the Hamiltonian. They noted that the presence of these points is related to the values of the complex resonance energies $\mathrm{ER}+\mathrm{iEI}$ found in [5].

Table 2. Resonances of selected states for $v^{2}=0.0001$: (A) present calculation; (B) results of [5].

n	A	
0	0.9999250	0.999925
1	2.9996250	2.999677
2	4.9990248	4.999025
3	6.9981246	6.998125
4	8.9969242	8.996924
5	10.9954235	10.995877
6	12.9936226	12.993623
7	14.9915213	14.991344
8	16.9891196	16.989119
9	18.9864174	18.986242
10	20.9834148	20.983418
12	24.9765078	24.976502
14	28.9683982	28.968399
16	32.9590855	32.959086
18	36.9485693	36.948571
20	40.9368493	40.936844
22	44.9239248	44.923925
24	48.9097957	48.909797
26	52.8944613	52.894462
28	56.8779213	56.877922
30	60.8601753	60.860175
40	80.7533396	80.753321
50	100.6162884	100.616298
60	120.4489676	120.449097
70	140.2513227	140.237430
80	160.0023299	160.000434
90	179.7648408	179.874965
100	199.4758931	199.664121

Table 3. Some resonances for the perturbed inverted Gaussian potential of equation (4) ($\mathrm{WR}=1.0$; $\mathrm{WI}=1.0$).

	$n=0$			$n=1$	
		ER		ER	EI
0.0	-9.0376398798	0.0		-7.1916893344	0.0
0.01	-9.0469657444	$2.206822(-7)$		-7.2466338687	$6.769099(-5)$
0.02	-9.0569829644	$2.574034(-5)$		-7.3125397507	$3.420164(-3)$
0.03	-9.0679502211	$2.699506(-4)$		-7.3884316838	$2.027596(-2)$
0.04	-9.0799873698	$1.158950(-3)$		-7.4638831819	$5.474928(-2)$
0.05	-9.0929238655	$3.155366(-3)$		-7.5312860559	$1.022625(-1)$
0.06	-9.1063755455	$6.556980(-3)$		-7.5886022560	$1.570888(-1)$
0.07	-9.1199037580	$1.143983(-2)$		-7.6364548008	$2.152353(-1)$
0.08	-9.1331310187	$1.770689(-2)$		-7.6762070180	$2.743216(-1)$

Beyond a certain threshold ER value, the EI values increase rapidly. This rapid departure of the resonance energies from the real axis prevents the appearance of a spectral concentration on the real axis. Table 4 shows for $v^{2}=0.02$ how the complex resonances found by our

Table 4. Complex resonances (B) and spectral concentration points (A) (from [8]) for the potential of equation (1) at $v^{2}=0.02(\mathrm{WR}=1 ; \mathrm{WI}=1)$.

	A		B	
n	E	ER	EI	
1	2.92	2.92339	0.0	
3	6.61	6.60693	0.0	
5	10.01	10.01069	0.0	
7	13.10	13.09740	$3.0(-9)$	
9	15.80	15.80197	$1.20(-5)$	
11	-	17.94723	$2.50(-2)$	
13	-	19.37812	$5.95(-1)$	

calculations (both perturbation and matrix) compare with the spectral concentration points found in [8]. The phenomenon described in [8] is clearly visible.

The specimen results given in this letter show that the complex matrix method of [2] can be effectively combined with the HEG approach to deal with the resonances arising from smooth perturbations of the harmonic oscillator. It should be noted that the numerical results given in the tables have been presented in a compact manner, for ease of display and comparison. Most of the results are severe truncations of results which were calculable to several more decimal digits by the techniques set out in this letter.

References

[1] Killingbeck J P, Grosjean A and Jolicard G 2004 J. Phys. A: Math. Gen. 377971
[2] Killingbeck J P, Grosjean A and Jolicard G 2004 J. Phys. A: Math. Gen. 37 L567
[3] Gyarmati B and Kruppa A T 1986 Phys. Rev. C 3495
[4] Harris D O, Engerholm G G and Gwinn W D 1965 J. Chem. Phys. 431515
[5] Aslanyan A and Davies E B 2000 Numer. Math. 85525
[6] Davies E B 1999 Proc. R. Soc. Lond. A 455585
[7] Aslanyan A and Davies E B 2000 Proc. R. Soc. Lond. A 4561291
[8] Brown B and Eastham M S P 2000 J. Comput. Math. 376
[9] Killingbeck J P, Grosjean A and Jolicard G 2001 J. Phys. A: Math. Gen. 348309

